
AD-Ai:32 860 A 3E-COMPONENT SYSTEM OF COMPETITION AND DIFFUSION(U) j/j
WISCONSIN UNIV-MADISON MATHEMATICS RESEARCH CENTER
M MIMURA ET AL. RUG 83 MRC-TSR-2557 DAAG29-80-C-0041

UNCLRSSIFIED F/G 12/1 NLEIEEEEEEEEIIEI
EEEEEEEEEEEEEE
U.



.12.

1.8.

1111- .6iI

MIROOP RSLUINTSCHR
NATONA BUEAUOF TANARD 191

1%. 4



MRC Technical Summary Report #25')7

A 3-COMPONENT SYSTEM OF

_0 COMPETITION AND DIFFUSION

Masayasu Mimura
and

Paul C. Fife

I

Mathematics Research Center
University of Wisconsin-Madison

610 Walnut Street
Madison, Wisconsin 53706

A^,quwt 198 1

(Received March 30, 1983)

Approved for public release

Distribution unlimited

-'2TE
Sponsored by

030
U. S. Army Research Office
P. 0. Box 12211
Research Triangle Park L
North Carolina 27709



UNIVERSITY OF WISCONSIN - MADISON
MATHEMATICS RESEARCH CENTER

A 3-COMPONENT SYSTEM OF

COMPETITION AND DIFFUSION

Masayasu Mimura and Paul C. Fife

Technical Summary Report #2557

August 1983

ABSTRACT

This report studies the existence of non-constant solutions of certain

two-point boundary value problems for 3-component systems with a small

parameter C, under homogeneous Neumann conditions at the boundaries. This

problem is related to the analysis of segregation patterns in population

models of 3-competing and spatially dispersing species. It is shown that the

reduced problem ( = 0) has many non-constant solutions exhibiting spatial

segregation. Only a few of these, however, can serve as valid lowest-order

approximations to solutions of the original problem when * is non-zero but

small. A singular perturbation construc..ion clarifies which are in this

category. The results of numerical computations of solutions are also

illustrated.
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A 3-COMPONENT SYSTEM OF COMPETITION AND DIFFUSION

PMasayasu Miniura and Paul C. Fife

* 1. Introduction

We consider populations of N species SleS1'S in a bounded habitat, and assume

* that the distribution of the populations are determined by competition of' Lotka-Volterra-

* Gause type and simple diffusion. Suppose ui(t,x) (i=1,2,...,N) is the population density

of the species S~ i 12,.N The spatial domain is taken to be the one-dimensional

interval (0,1). Then we have the following reaction-diffusion equations governing thefo

*evolution of the i

2
au. a u N

at) d - + Cri - Ia. .ju.)u. t 0 , x e (0,1), (i=1,2,...,N)
ax j=1 '

where dip r i and a ij (i,j=1,2,...,N) are non-negative constants. In ecological

terms, r i is the intrinsic growth rate of Si, ajii is a measure of intraspecific

*competition of Si* and a. i ij) is a measure of interspecific competition between the

species. The boundary and initial conditions are taken to becesin o

(2) j- Ct,x) = 0 for t > 0, x = 0,1, (i=1,21 ....,N)

- and

(3) u (0,x) = u (x) > 0 for x e [0,11
i io

The case of two competing species (N-2) y_____

D i r -/
( 2

I d- + Cr -a 1 u1  a u )u
at 13ax2 1 111 1221 1 r

a* 24 32 u 1

at 2 3x2 2 21'1 '22u2 2

*has been studied extensively. When r and a ij Ci,J-1,2) are fixed arbitrarily except

that the inequalities

* Sponsored by the United States Army under Contract No. DAAG29-80-C-0041.



all r1  a 1 2

a2 1  r2  a2 2

are not both satisfled, the solution of (4), (2), (3) tends to a constant steady state

solution (for instance, [2]). That is, there never appears any spatial segregation for

large time. Furthermore, In the remaining case

all r a _12

a21 r2  a22

Klshimoto 15] showed that even if there exist non-constant nonnegative steady state

solutions, these are unstable. This result indicates that the simple diffusion-competition

model (4) cannot explain spatially segregated distributions of two competing species. The

situation Is different when one introduces the effect of cross-population pressure (13]

Into (4). It is shown in [11] that there occur non-constant steady state solutions

exhibiting spatial segregation on the basis of cross-diffusion-induced instability (see

also [10]).

These results motivate us to study whether or not systems with more than two

components (N > 3) can exhibit spatial segregation. In this connection, Evans (3] and

XJishimoto (6] have already presented some examples of competition and/or prey-predator

systems In the case N - 3 which show diffusion-induced Instability. This phenomenon has

usually been associated with activator-inhibitor systems, but competitive interaction does

not fall into that category. A few examples of systems with stable non-constant

bifurcating steady state solutions were given in (6].

Furthermore, Kishimoto, Mimura and Yoshida (7] have recently studied the system (1)

with N - 4 and have shown that there appear time-periodic, spatially non-constant

solutions.

In this paper, we will be interested in the stationary problem (1) and (2) with N - 3

under the conditions that two of the diffusion coefficients are sufficiently small. We

show the existence of non-constant, nonnegative solutions by a singular perturbation

construction.

-2-
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2. Ecological background and assumption

Uncovering the mechanisms for spatial patterning of ecological communities has been a

* very active line or research in population biology. Most often, spatial diversity in

connected habitats has been assumed to be linked to some heterogeneity in the environment,

but it has also been recognized (Levin 191, for example) that stable patterns can exist in

otherwise homogeneous environments. A celebrated mathematical model displaying such

features in the analogous context of chemical interaction (and diffusion) was presented by

Turing (15] in 1954, and model systems of this general type have been elaborated

extensively since then.

Our context, of course, is a continuous space-time population model incorporating

species interaction and dispersal. Interactions of prey-predator type are analogous to

those of "activator-inhibitor" type occurring in other disciplines, and are most

reminiscent of the type of chemical interaction that Turing postulated. And, in fact,

small amplitude patterns for two-species prey-predator situations with spatial dispersal

modelled by diffusion operators can, in many cases, be constructed by standard bifurcation

* techniques.

* Competition-type interactions are not of activator-inhibitor type, however, and so it

is not too surprising that bifurcation techniques provide no stable patterns for two

competing species models. More than this is true. Recently Kishimoto and Weinberger (8]

have shown that no non-constant stable solutions of the corresponding boundary value

problem (bounded and convex domain in one or more dimensions) with no-flux boundary

condition can exist. This raises the question as to whether patterns are possible in

systems with more than two competing species.

The present paper shows that patterns are possible in three-species competition

systems with diffusion. The technique used is not bifurcation, but rather formal singular

perturbation layer analysis, utilizing large differences in the diffusion rates.

In practical terms, these results simply serve to point out yet another mechanism for

stable spatial diversity in homogeneous environments. There has been, of course, no

experimental or observational studies which clearly demonstrate the action of this

-3-



mechanism in nature, although segregation phenomena in communities of three species, J
possible competing, have been studied. For example, Trlgardh [141 studies the interaction

of three (and more) species of pine beetles. When Blastophaqus piniperda and B. minor were

present on a tree, their ranges were observed to be segregated: B. piniperda occupied the

lower, and B. minor the upper region of the trunk. But on a small island B. minor was not

seen, and the range of the other species was enlarged. A third species, Ips longicollis,

living more in the outer part of the bark, coexisted throughout the ranges of both

Siastophaqus species. Crombie (1] observed a similar ecosystem with Rhizoperta dominica,

Sitotroga cerealella, and Oryzaephilus surinamensis. Competition among three or more

species, irrespective of spatial distribution considerations, is recently under

investigation by many researchers; for a survey of some of this work, see Schoener [121.

We shall investigate three-species competition systems, and shall look for spatial

distributions similar to those mentioned above, observed by Trtgardh and Crombie.

Consider the stationary version of (1) and (2) with N - 3,
2

0 f d1 d u 2 r+ - a 1 1 u1 - a 1 2 u2 - a 1 3 u3 )u 1
dx2

2

d u

0 = d -- + (r 3 -a3 1u - a32 u2 - a3 3 u3 )u2  x
ax2

and the boundary conditions
du

(6) - 0, x 0,1, (1-1,2,3)

We impose some conditions on ri and aij (i,j,1-,2,3)1

a2 2  a 23 r2
(HI) - - - .

a 3 2  a33 r3

In ecological terms, this implies that when S1  is absent, S2 can survive and S3

becomes extinct in competition. That is, when u1 E 0,

r2
ulm (u2 (t,x), u3 (t,x)) = ( ,0)

~22
(de Mottoni [21).

-4-
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a12  r1  a11  a13  r1  all
(12 < r < - and -L- C
22 r a21 a33 r3  a31

which imply thdt in the absence of S3 (resp. S2 ), S1 and S2 (resp. S3 ) may coexist in

competition. (See Figure 1).

u1

3S r3_E i=1a3juj-0

33 j0/ jI -

I 3

Figure 1

Remark 1. The argument in this paper will also handle the case when S2 survives to the

exclusion of S,, when S3 is absent, the other assumptions above remaining unchanged.

S and S are both slowly diffusing
(H13) 2 3

that is, d = 1,d 2 = C2  and d 3 = de

for somieconstant dO> (0 <C << 1)

We will impose some conditions on ri and a~j (i,J=1,2.3) in addition to (I) and

(H12) later. Note that the question as to whether all three species can coexist in the

~.

absence of diffusion is not relevant to the present study.

-5-s
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3. Singular perturbation problem

In this section, we consider the reduced system corresponding to (5):

2
d v

0 2 + (r1 - a1 lV1 - a 12 v2 -a 13v3)v1 x e (0,1)
dx

()0 =(r
2  a a21v I a 22 v2 a a23v3 )v 2,

Os Cr -a v-a v-a v )v
2 21 1 22 2 23 3 20 - Cr3 - a3 1 v1 - a3 2 v2 -a a3v)v3

subject to the boundary condition
dv

(8) -= O, x 
= 

0,
dx

From the second and the third equations of (7), we have four possibilities

(I) 72 v3  0

r 2 a211v(II) v2 = 
r 22 a21Vl

r 3 -a 0v

r3 a 31 1
(III) V2 - ,v 3  a33a33

and

(r -a v )a - Cr3-a v )a (r -a v )a - (r2-a v )a
2 21 1 33 3 31 1 23 3 31 1 22 2 21 1 32

2 a2 2a 33 -a 32a 2 3  3 a2 2a 33  a 3 2a2 3

Substituting the relations (I) - (IV) into the first equation of (7), we obtain scalar

equations for vi,
2
d v1

(9 ), 0 d 2  + fi (vl) x e (0,1) (i=I,II,III,IV)dx
2

subject to the boundary condition (8), where fiCv) i,j,I,II,...,IV) take the forms

f (v) = (r - a v)v

fiIv) = rla 22
- 
a12 r2 a11a2212 a21 v)v ,

a 22  a22

ra 3 3-a 1 3r3  a1 1a3 3- 13 3 1 v)v
II v a3 3  a3 3

and
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f (v) [(a a -a a 3 )r + (a 123 )r +
IV a22 a 33-a3 2a 23  22a33 32 -a 12 33 2

(a12a2 3-a13a2 2 )r3 - a1 1 (a2 2a3 3-a3 2a 2 3) + a12 (a3 1a 2 3-a 2 1a 3 3)

a1 3 (a21 a3 2 -a3 1 a22 ))v]v

It is obvious that the forms of f1 ' f1 I and fi 1  are all convex from above (Figure

2). Therefore, the problems (9). (i=III,III) subject to (8) have no non-constant

nonnegative solutions. (However, (9)IV may indeed possess such solutions for suitable

r and aij (i,ju-1,2,3). Our solutions will be constructed differently.)

fr M

u1 (13\2) _ .1
u (12\3)

Figure 2 "1

We now assume ar

- 1ta22 a 12r2 r1a33 a 133 -CM4) u1 (12a3) a a a a a aa (13\2)
11 22 -a12 21 11a33 -a a3 1

where u (12\3) is the first component of the solution (ul,u 2 ) of

r, - a11u1 - a12u2 - r2 - a21ul - a22u2 = 0

o (13\2) Is similarly understood. We take

u (12\3) > u (13\2) I
Here we construct a new function fll ,,I(v) defined by

v(V) for < v
f ~ ~ (vEII III~ )  fv) for 0 < v < ]

-7- I
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where (u (12\3) < < u (13\2)) Is arbitrarily fixed, and consider the problem

2

dx

subject to the boundary condition ()

Theorem 1. Fix arbitrarily so that mgax(u 1 3\2), u(12\3)) < F< u (12\3). Then the

problem (10), (8) has a non-constant nonnegative solution v (xiFE) satisfying

Proof: See Mimura (10].

Using this function v (x;FE), we obtain a solution of the problem (7), (8) as
19

follows:

r1 a v1(x,;)

r2 - 2 1 1( (v >

v 2 a 22  ( 1

0 (vl ~
a 33 (v I < C) (Figure 3)

The solution (11) shows that S2 and S3  are coexisting with spatial structure of

segregation. Thsi nItrsigpeoeo easi h bec fS,, S 3  always

becomes extinct under the assumption (Hi). That is, the presence of S1 makes the

coexistence of S 2 and S 3  possible.

0X* 1 0 x~ 1 01

vl(X;) v (X;E v 3(x;&



r. a

a~j= O 1- '3,lalj =0

3

u2  r2- j I2j= -:_

u3 .

33

Figure 3B. "Outer" solution

We next consider the problem of whether the solution of the reduced problem (11)

becomes a lowest order approximation to a solution of the original problem (5) when C is

sufficiently small but non-zero. The solution will be sought in separate regions named

"inner" and "outer" regions and then matched appropriately. It is expected that the

function (11) becomes an "outer" solution outside a neighborhood of x = x*, where x* is

a point where v (x*) = F. Therefore we seek here an "inner" solution in the neighbor-

hood of x = x*. We use the transformation z = (x-x*)/£ in (5) to obtain

-9-
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20 z C 2r 1 - a1 1u1 - a12 u2 - a13 u3 )u1

d2
d u

(12) 0 - + (r - all -a 22 u2 - a23 u3 )u2dz
2
d u3(1o = d + (r3 - a31u1 - a32u2 - a33u3)u3

B1 = v 1(x ) - , we obtain a 2-component system with

respect to u2  and u3 , which is an approximation to (12):

2-

d U2

0 = - + ( ( ) - a 2 2 U2  a 23 3 )2dz 2

(13) z e Rd2U

0 = d - + (R3 () - a 3 2 U2 - U)U
dz

2

where R ( ) = ri - a Ei 2,3). The boundary conditions at z - ±w are specified as
R2(1 )1

R )

2' a 2  222

(14) and

u3 - o - - )
U3 U3 ~ a33

We must study the existence of a nonnegative solution (U2 (z), U3 (z)) to the problem (13),

(14).

Here we assume
Ca5) 21 , r 2

31 r3

which implies that the surfaces r2 - a21 u1 - a2 2 u2 - a2 3u 3 = 0 and r3 - a 31u1 - a3 2 u2 -

a33u3 = 0 intersect in 3 
= {(u uu flu > 0 (i - 1,2,3)). That is, two linesa333 iteset n + 1 23i1

R2( ) - a 22u 2 - a 23u - 0 and R3 () - a32u 2 - a 33u = 0 intersect in

2- {(u 2 ,u 3 )1u 2  P 0, u3 ) 0} for each & satisfying u (23\2) < t < u1 (2
3\3). Thus, we

find that as & Increases, the kinetic system of (13) takes the form of a monostable

system (0 < & < uI(2 3\ 2 )), a bistable one (U (23\2) < < (23\3) and then a

monostable one (u (23\3) < ) again.

-10-



Theorem 2. There exists a value E* satisfying u1(23 2) < * < u1(23 3) such that the

problem (13), (14) has a solution (U2 (z;E*), U3 (z;E*)). (Figure 4).

U1

r.- 3  
= 0

3 a

u2 r E 3 a= 0 ...
2 2 j la2j ..

Figure 4."Inner" solution

Proof: This is a consequence of Theorem A2 in the Appendix, with the following notational

changes: subscripts I In that theorem are to be replaced by 3 for the present

contexti rI is to be R3 /d, r2  is R2 , and alj is a3 j/d.

Remark 1. Theorem 2 does not show explicitly the value of t*. However, when a2 2 = 33

and a3 2 = a2 3 , then r = r2 - r3 )/(a2 1 - a3) (Gardner (4]).

Remark 2. The uniqueness of such a * is not known, but has been confirmed numerically.

Thus, when we assume

(H6) (u 1 (23\2), u1(23\3))C (u1 (13\2), u1 (12\3))

we obtain "outer" solutions (v1 (x;E*), v2 (x NW), v3 (x;E*)), as well as "inner" solutions

(U (X*;*), U2 C( - *), U (-,*W)), where E* is determined by Theorem 2 and x* is

found from v (X*C&*) -

-11-
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The final task is to obtain a solution of the original problem (5), (6) when C is

sufficiently small but nonzero which corresponds to the "outer" solution of (7), (8) and.

the "inner" solution of (13), (14) constructed above. Unfortunately we have not yet been

* able to prove the existence of this solution. We show, however, numerical experiments to

* supplement the analysis given in this paper, thus further confirming the existence of

solutions exhibiting spatial segregation between two of the species (Figure 5).0

-12-



d 1 -l.5
d 2-0.005

u1 (t'x) u 2(t,x)

u3(t~x

d -0.025

u 1 (t, X) u 2(t'x)

Figure 5

U 3 (tx)



4. Concluding remark

We have discussed non-constant steady state solutions of a three component system of.

competition and diffusion. In this system, we have assumed that species 1 and 2, as weill

as 1 and 3, can coexist, but 2 and 3 are of exclusive interaction, that is, either 2 or 3

r'. becomes extinct. Thus, a singular perturbation technique constructs non-constant steady

state solutions exhibiting a striking segregated pattern in the species when species I

diffuses fast but 2 and 3 diffuse slowly. The argument presented here is also valid in the

situation where species 2 and 3 coexist, but 2 eliminates 1 as well as 3.

-14-



Appendix.

Consider the system S
Su + uf(u,v) - 0xx

VA { : vg(u,v) - 0

where

f = rI - a 11u - a1 2 v and g - r2 - a2 1u - a2 2v

(All of the following extends easily to a much wider class of functions (f,g). We shall

not pursue that generality.)

Definition. The pair (f,g) of this form with rI > 0 and aij > 0 (ij - 1,2) is said

to belong to class a If r2/r1 > a22/a 1 2.

For (fg) e a, we shall be concerned with conditions under which there exists a

solution of (A1) for x e R satisfying

(A2) (u,v)(-) - (0,r 2 /a22 ), (u,v)(+-) - (r1/a 1 1,0)

With no loss of generality we shall assume, for simplicity, that r2 - a22 and r1 =a,.

This may always be achieved by rescaling u and v. Written as a system of 4 first order

equations, (AI) becomes

-p

-uf(u,v)
(A3)

q -vg(u,v)
d

with (f,g) e a, where = - . Solutions of the system wiil be denoted by X(x) where
dx

X = (u,p,v,q). Clearly the points A = (0,0,1,0) and B = (1,0,0,0) are rest points.

Our main question will be whether there exist trajectories connecting them. The projection

of X(x) onto the (u,v) plane will be denoted by U(x), where U = (u,v).

Proposition 1. The rest point A has a local two-dimensional unstable manifold M which

may be parameterized by points In the (u,v) plane In a neighborhood of (0,I). More

precisely, to each such point (u,v) # (0,1), there corresponds exactly one trajectory

on N, and there exist no other trajectories issuing from A. The trajectories themselves

may be parameterized by a single real parameter.

Proof. The system (A3), linearized about A, can be written as

-15-
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(A4) X = HX j
where H has two positive eigenvalues 1 = ra -1 and A /r and two negative

ones. The unstable manifold for (A4) is the plane

a2 1 -

p A u, q - u + 2v

1;2

Its trajectories, projected on the (u,v) plane, are the solutions of

- a2 1  A2
- - Y + v:with - and is
p du U 1 A 1 A 2

and can therefore easily be investigated. For c > 0, they cross tranversally the line

segment

I c u = cCO - s), v -ace (0 < s < 1)

provided that a > y. Therefore s is a parameter for those trajectories entering the

quarter-plane (u ) 0, v 4 0) which cross I the rest cross the u-axis between 0 and

C, and can be parametrized by the point at which they do so.

Because of this transversality, if we define the similar seguent in the (uv) plane:

I£ u = e(i - s), v - 1 = -acm (0 ( s < 1)

for small enough C, then a can be used to parameterize the trajectories on N whose

projections cross £ from left to right or top to bottom. We denote these trajectories

by X s(X)= (usaX), ps(X), vs(x), q5 (x)), and their projections by Usx). The latter are

pictured in a neighborhood of A as follows:

(c,l) (c,l)

(011) (0111

v

(0,1-ac) Case < 1 (0,1-ac) Case i > 1

-16-
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We are concerned with elucidating conditions under which, far some s, Xe is a

connection from A to B. we shall denote by Q the square

Q=(0,1] (0,1]

in the (u,v) plan.

We shall need to account for sign changes of p and q along X a

Definition. The point U is a turning point for X if it lies on the trajectory Us,

and if p5  or vanishes there. (If both p5  and q. vanish at that point, it is

counted twice in the following proposition.)

Proposition 2. If uahas two or more turning points before leaving Q, then the first

two are well defined and isolated from the rest. Immediately after the second, p5 < 0

and q. > 0.

Proof. If pCx1 ) =0 for some x,, it cannot be true that p(x) 0, for otherwise

uWxS u s(x p(x) E0 would be a solution of the first two equations in WA), and by

uniqueness of the Initial value problem for that subsystem (v(x) being considered known),

would equal the first two components of X (x). This is impossible because our

construction does not allow u to be constant. Therefore, p or q (or both) changes

sign at each turning point.

Each fixed trajectory X 8 has p > 0, q < 0 near to (0,1). Suppose p changes

sign at the first turning point, and q does not. Since p - -uf < 0 there, that point

must lie where f > 0, i.e. below the line f =0. Since q < 0, the trajectory stays

below at least until the second turning point. Therefore p cannot change sign at the

second point, since pwould have the wrong sign, and it must be q that changes. The

other possible cases are analyzed the same way. In particular, although the first two

turning points may coincide, the first three may not. This completes the proof.

Proosition 3.* If U5a does not exit Q and does not have more than one turning point,

then it has none, and X8Is a connection to B.

Proof. There being at most one turning point, u5(xW and v a(x) are eventually monotone,

so K5 Wx must approach a rest point as x + -- There are four rest points A, B, 0 0

(0,0,0,0) and E (u,0,v,0) where (u,v) Is the Intersection point of f g -0. The



proof consists in eliminating all except B. A is excluded because it would require two

turning points. We show why E is also excluded: the argument for 0 is similar. if

ITS* (u,v) as x+* the approach must be Monotone. It cannot be from the left and

above f *0, because then p > 0 and

p=-uf > 0, contradicting the requirement that p + 0. Similarly it can not approachj

from above, but remaining below g - 0. This excludes all approaches from above left.

Approaches from below left are impossible because on the approach, we would have q > 0.

Since only one sign change was allowed, it must have been a, and the turning point must

have been below f - 0 and g -0. But that is impossible because q would have the

wrong sign there. The other directions of approach may be eliminated for similar

reasons. This completes the proof.

Definition: ac al is the class of functions (f,g) such that for some s e (0,1), us

Proposition 4. Suppose (f,g) * 'and there is no monotone connection, A to B. Then

every U58 exits 9 transversally.

Proof. By Proposition 3, U58 must exit Q before its second turning point (if it has

one). if it exits through the interior of the bottom of Q, then q 1 0 just before and

after exits if q - 0 at exit, then q=0 there, and the last two equations of WA)

would attain a rest point at exit, which is impossible. Therefore q < 0. Similarly exit

through the interior of the right side can not be achieved unless p > 0 there. The other

cases are handled the same way.

Proposition 5. a0is an open set in the space of parameters r i and a ij (i,j 12)

Proof: Consider a trajectory X5  with two turning points. The proof of Proposition 4

also shows that sign change of p5  can not occur on the lateral sides of Q, nor those

of q8on the top or bottom. If p58 changes sign before q., it must therefore do so in

the interior of Q, and then the second turning point must be in the interior or on the

left side. The latter is excluded because q v a vg < 0 there. A similar argument holds

if the order is reversed. Therefore, both turning points occur in the interior. Now it is
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easy to see that the trajectory Xs , with s fixed, depends continuously on the

parameters of the equation. It therefore continues to have two turning points before

exiting 9 when the parameters are changed by a small amount.

Theorem Al. Let the family (fg)r e a depend continuously on the real parameter r.

Assume (f'g)r e a. for r 0, but not for all positive r. Let r* =

supfr : (fg) e a0  for 0 < r < r0. Then A is connected to B for r = r*.

Proof. Our trajectories now depend on two parameters, that is, Us,r . Let (r n be an

sequence with r + re, and let a be such that Usn.rn has two turning points before

nn
leaving Q. By possibly taking a subsequence, we may assume that s n * as n +~

Now s* e (0,1), because it is easily seen that any trajectory Us,r with s in a neigh-

borhood of 0 or of 1 does not have two turning points before leaving Q. Consider the

trajectory X5 . r° By Proposition 5, (f'q)r* a0; hence by Proposition 4, either there

exists a connectioi, for r = r*, or every trajectory Us,r* leaves Q transversally,

before experiencing two turning points. The proof of the theorem consists in excluding the

second case. That case would imply, in particular, that Us*,r* exits transversally, and

that while U s*,r*(X) e Q, either p or q remains of one sign and is bounded away from

zero near the exit point. By continuity of trajectories with respect to parameters,

X can be approximated by portions of the trajectories Xn for large n.
s*,r* 8n r n

Therefore for such n, the Usn ,rn also exit transversally before experiencing a second

turning point. This contradicts their construction and finishes the proof.

Corollary to Proposition 4. If (fg) * ao, then there exists a monotone trajectory which

attains or approaches (1,0). If, in addition, no connection exists, then any given point
0'.

on the bottom or right side of Q is attained by some trajectory Us .

Proof: If there exists a monotone connection, we are done. If not, Proposition 4 shows

that every Us exits transversally. For small s, the exit point is on the top of Q.

For s 1 the trajectory lies on the v axis and the exit point is the origin. By

tranaversality, a standard argument shows that the exit point depends continuously on s.

Therefore the range of exit points must include every point between those for s near 0

-19-
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and s near 1, proceeding either clockwise or counter. But (0,1) is not an exit point

Cit would require two turning points), so we proceed clockwise, and cover all of the sides

indicated.

For the following proposition, we divide Q into four regions

I f < 0 < g} o Q, II - {f > 0,g > 0} Q

III {g(0 <flAQ, IV - {f0, g Q .

For a monotone trajectory U from (0,1) to (1,0), we denote
s

r = fu (x)} n Q,

Jif ifrniuf(uv)dul, Jig ifrn'vg(uv)dvi

and similarly for JIIf, etc.

Proposition 6. Let there exist a monotone trajectory Us approaching or attaining

(1,0). Then the following estimates hold4 where the symbols c and C denote positive

constants depending only on lower and upper bounds for the constants ri, aij (i,j - 1,2),

and a, where we define a = the length of 311I {v-0}. They do not represent the same

constants in each instance. Here b is the diameter of the region I.

(a) Jif + Jig = Cb;

(b) JIVg c cJIVf - Cb1

(c) the inequality JIIMf + JIVf - < C implies

JIIIg + JIVg > c and JIg . C(s+b);

(d) Jif + IVf JIf + J1 11 f;

(e) JIg IIg = JIlIg + JIVg"

Proof: (a) follows immediately from the fact that the length of r n I is bounded by 2b.

(b) In the limiting case I = P, we have vg ) cuf in IV, from which the result

follows in that case with C 0 0. When I F, this inequality is violated only near the

intersection aI f 3III, which has length < b.

(c) The following sketched argument can easily be quantified. The integral

f( Iufldu = J1f + JIvf can be made small only by requiring that rn (III % IV)
frn(rIruIv uh

lie mostly in some small enough neighborhood of {f 0}, the size of the neighborhood

-20-



depending on a lower bound for a. But lying in this neighborhood forces If vgdvl to be

larger than some minimum amount, since IvgJ is not also small in that neighborhood. It,

together with the monotoncity of r, also forces r n II to lie near 3i n 311, hence

the final estimate in (c).

(d) Multiply the second equation of (A3) by p and integrate from - until (1,0)

is attained. We find that the value of p at (1,0) satisfies

I P2 =-fr uf(u,v)du > 0

The integral appearing here is equal to

- JIf - JIVf + J1
I
f + JIIf ' 0

hence (d).

(e) is proved in the same manner.

For purpose of the following theorem, we remove the restriction r2/a2 2 = rI/a 1 1  1.

Proposition 6 is clearly valid without it.

Theorem A2. Let the coefficients ri > 0 and ai. > 0 (i,j = 1,2) depend continuously on

a real parameter C for C in some interval A. Assume that for all C e A

22 C 21

a 12 a 11 t

Assume that for some e e A, r 2/r a 22/a 12, and for another value, r 2/r, a 21/a1"'

Then for some E e A, there exists a solution of (Al), (A2).

Proof: For values of E such that r/r I > a2/a11 we have that (f,g) e a, but a.

To see the latter, observe from the proof of Proposition 2 that if a trajectory has two

turning points, they must lie in the region III where f > 0 and g < 0. But the

assumed inequalities imply that region is empty.

On the other hand, by continuous dependence on C, there are values of C for
which a22 /a1 2 < r2 /r1 < a2 1 /a1 1  and r2 /r, is arbitrarily close to a2 2 /a21 . When it is

close, the size of I is small, the parameter a, remaining bounded away from zero. For

sufficiently small b, we show (f,g) e a 0. This, together with Theorem Al will establish

the desired result. It suffices to show there exists no monotone trajectory attaining or

approaching (r1/a11 ,0). Suppose there were. A straight-forward calculation shows that

-21-
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r must be concave upward in IV and downward in II. It follows from this and the fact that

r must reach (r /a,0) that either r n ii or r o IV must be empty. Suppose it is

the former. For some 5 > 0, let A be the set of for which
0

a2 2 /a12 < r2 /r I < a2 2 /a12 + 6. In the following, the constants c and C are uniformly

bounded from below and above for & e Ao, and do not necessarily denote the same constant,

even within a single context. From (a) in Proposition 6, we have JIf + Jig 
- Cb, and

from (e),

Cb ) J )1JI + J
Ig Ilug IVg

Hence if b is small enough, the inequality in (c) regarding JIIIg + 3 IVg is violated,

hence J IIf + JIVf ; c. From this and the fact (d) that Jif + 3 IVf ) we have

I + 2 JI + J 0 c

if I'/f Ilif IVf

so

Ivf ) (c - Cb)
I~ 2

The same type of inequality also holds (b) for JIvg : IVg ( c Cb) > 02/4- Cb ) /4 (for b
22

small enough). From (e), this implies Jig c 2 /4, which for small b contradicts the

fact that J C Cb.
Ig

The other case is when ri IV = . Again, we have Jif 4 Cb. From (d), we obtain

Cb > Jif )J I I f  3JI I f + Ivfl so the hypothesis of (c) is fulfilled for small b. Hence

J 3 C(b + s) 4 Cb
Ila

But this contradicts (e), whose left side is hounded by Cb, and right side (by (c)) is

bounded from below. Therefore, no such r can exist. This completes the proof.

-22-
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